Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 12(12)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38136212

RESUMEN

Previous studies detail that different blood groups are associated with incidence of oxidative stress-related diseases such as certain carcinomas. Bioactive compounds represent an alternative for preventing this oxidative stress. The aim of this study was to elucidate the impact of blood groups on the erythroprotective potential of fucoxanthin, ß-Carotene, gallic acid, quercetin and ascorbic acid as therapeutic agents against oxidative stress. The impact of ABO blood groups on the erythroprotective potential was evaluated via the antioxidant capacity, blood biocompatibility, blood susceptibility and erythroprotective potential (membrane stabilization, in vitro photostability and antihemolytic activity). All tested antioxidants exhibited a high antioxidant capacity and presented the ability to inhibit ROO•-induced oxidative stress without compromising the cell membrane, providing erythroprotective effects dependent on the blood group, effects that increased in the presence of antigen A. These results are very important, since it has been documented that antigen A is associated with breast and skin cancer. These results revealed a probable relationship between different erythrocyte antigens with erythroprotective potential, highlighting the importance of bio-targeted drugs for groups most susceptible to certain chronic-degenerative pathologies. These compounds could be applied as additive, nutraceutical or encapsulated to improve their bioaccessibility.

2.
ACS Omega ; 8(44): 41156-41168, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37969967

RESUMEN

Betalains are bioactive compounds with attractive antioxidant properties for the food industry, endowing them with potential application in food coatings to maintain quality and extend shelf life. However, they have low stability to factors such as light, temperature, and humidity. An alternative to protect bioactive compounds is nanoencapsulation; one of the most used techniques to produce an encapsulation is coaxial electrospraying. In this research, the preparation and characterization of gelatin-betalain nanoparticles were carried out using the coaxial electrospray technique. Betalains were extracted from pitaya (Stenocereus thurberi) and encapsulated in gelatin. The obtained material was evaluated by SEM, FTIR, TGA, and DSC techniques and for its antioxidant capacity. By SEM, nanoparticles with spherical and monodisperse morphologies were observed, with betalain concentrations of 1 and 3% w/v and average diameters of 864 and 832 µm, respectively. By FTIR, the interaction between betalain and gelatin was observed through amino groups and hydrogen bonds. Likewise, the antioxidant activity of the betalains was maintained at the time of encapsulation, increasing the antioxidant activity as the concentration increased. The results of the DPPH, ABTS, and total phenols methods were 645.4592 µM T/g, 832.8863 ± 0.0110 µM T/g, and 59.8642 ± 0.0279 mg GAE/g for coaxial nanoparticles with 3% betalains, respectively. Therefore, the coaxial electrospray technique was useful for obtaining nanoparticles with good antioxidant properties, and due to the origin of its components and since the use of toxic solvents is not necessary in the technique, the material obtained can be considered food grade with potential application as a coating on functional foods.

3.
Foods ; 12(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37107361

RESUMEN

The quality of wine grapes and wine depends on their content of phenolic compounds. Under commercial conditions, the phenolic maturity of grapes is mostly achieved by applying abscisic acid analogues. Some Ca forms represent a cost-effective alternative for these compounds. In this study, 'Shiraz' vines (veraison of 90%) were sprayed with CaCO3-rich residues from the cement industry (4.26 g of Ca per L). Fruit from treated and untreated vines was harvested 45 days after CaCO3 spraying and evaluated for quality. The fruit was vinified, and the obtained wines were bottled and stored in darkness for 15 months at 20 °C. Wines were evaluated for quality after storage. The evaluation of grape and wine quality included the content of phenolic compounds and antioxidant capacity. The treatment with CaCO3 did not affect the ripening rate of grapes. However, the treatment improved the fruit yield as well as the color development, the content of phenolic compounds, and antioxidant capacity of grapes and wine. The treatment favored especially the accumulation of malvidin-3-O-glucoside, pelargonidin-3-O-glucoside, caftaric acid, caffeic acid, trans-cinnamic acid, quercetin, catechin, epicatechin, resveratrol, and the procyanidins B1 and B2. Wine made with treated fruit was of higher quality than that of control fruit.

4.
Metabolites ; 12(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36557241

RESUMEN

Previous studies have reported that different blood groups are associated with the risk of chronic degenerative diseases that mainly involve inflammation and neoplastic processes. We investigate the relationship between blood groups and the erythroprotective effect of extracts from Navicula incerta against oxidative damage as a proposal to develop drugs designed for people with a specific blood type related to chronic pathology. The study was carried out through the elucidation of the erythroprotective potential, anti-inflammatory and antiproliferative activity of Navicula incerta. Research suggests that the presence or absence of certain blood groups increases or decreases the abilities of certain phytochemicals to inhibit oxidative stress, which is related to the systemic inflammatory response involved in the development of different types of cancer. The pigment-rich extracts from Navicula incerta inhibit ROO•- induced oxidative stress in human erythrocytes on the A RhD+ve antigen without compromising the structure of the cell membrane. This result is very important, since the A antigen is related to the susceptibility of contracting prostate cancer. Similarly, it was possible to inhibit the proliferation of cervical (HeLa) and prostate (PC-3) carcinoma. The combinatorial analysis of different biological activities can help design phytochemicals as new candidates for preventive drugs treating the chronic degenerative diseases associated with a specific blood group.

5.
Nanomaterials (Basel) ; 12(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35808139

RESUMEN

This study describes the preparation and characterization of eggplant peel extract-loaded electrospun gelatin nanofiber and study of its in vitro release. Results obtained by scanning electron microscopy (SEM) and transmission electronic microscopy (TEM) micrograph revealed that eggplant peel extract-loaded electrospun gelatin nanofiber is in nanometric range with an average diameter 606.7 ± 184.5 and 643.6 ± 186.7 nm for 20 and 33.3 mg mL-1 of extract addition, respectively. Moreover, the incorporation of extract improved morphology by being smooth, homogeneous, and without account formation compared to nanofibers without extract (control). Fourier transform-infrared (FT-IR) spectra indicated that interaction exists between electrospun gelatin nanofiber and eggplant peel extract by hydrogen bond interactions, mainly. Electrospun gelatin nanofibers showed encapsulation efficiency greater than 90% of extract and a maximum release of 95 and 80% for the medium at pH 1.5 and 7.5, respectively. Therefore, the electrospinning technique is a good alternative for the conservation of bioactive compounds present in the eggplant peel through electrospun gelatin nanofiber.

6.
Molecules ; 26(9)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066776

RESUMEN

The aim of this work was to monitor the quality, antioxidant capacity and digestibility of chickpea exposed to different modified atmospheres. Chickpea quality (proximal analysis, color, texture, and water absorption) and the antioxidant capacity of free, conjugated, and bound phenol fractions obtained from raw and cooked chickpea, were determined. Cooked chickpea was exposed to N2 and CO2 atmospheres for 0, 25, and 50 days, and the antioxidant capacity was analyzed by DPPH (2,2'-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis-[3ethylbenzothiazoline-6-sulfonic acid]), and total phenols. After in vitro digestion, the antioxidant capacity was measured by DPPH, ABTS, FRAP (ferric reducing antioxidant power), and AAPH (2,2'-Azobis [2-methylpropionamidine]). Additionally, quantification of total phenols, and UPLC-MS profile were determined. The results indicated that this grain contain high quality and high protein (18.38%). Bound phenolic compounds showed the highest amount (105.6 mg GAE/100 g) and the highest antioxidant capacity in all techniques. Cooked chickpeas maintained their quality and antioxidant capacity during 50 days of storage at 4 and -20 °C under a nitrogen atmosphere. Free and conjugated phenolic compounds could be hydrolyzed by digestive enzymes, increasing their bioaccessibility and their antioxidant capacity during each step of digestion. The majority compound in all samples was enterodiol, prevailing the flavonoid type in the rest of the identified compounds. Chickpea contains biological interest compounds with antioxidant potential suggesting that this legume can be exploited for various technologies.


Asunto(s)
Antioxidantes/química , Atmósfera/química , Dióxido de Carbono , Cicer/química , Grano Comestible/química , Nitrógeno , Cromatografía Liquida , Digestión , Flavonoides/química , Lignanos/química , Espectrometría de Masas , Fenoles/química , Proteínas de Plantas/química
7.
Food Res Int ; 140: 110024, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33648254

RESUMEN

The peels of ripe fruit of 'Hass' and 'Hass' type (HT) avocado cultivars were evaluated for phytochemical composition and other attributes. Peels represented from 8.78 to 14.11% of fruit weight. Their color ranged from homogeneous black to black with very small greenish spots. The oil content in the peels was low. Twelve fatty acids were identified in peel oil and the ratio of unsaturated to saturated fatty acids suggested that peel oil might contribute to human health. The phytochemical composition varied significantly with cultivar. However, many HT peels were superior than 'Hass' peel in their content of α-tocopherol, ß-sitosterol, perseitol, and cyanidin-3-glucoside, which was up to 211.67, 45.92, 337.17, and 519.27% higher in HT peels, respectively. The content of some phenolic compounds, especially procyanidin B2 and epicatechin, was significantly lower in 'Hass' than in many HT peels. Few HT peels showed a higher content of carotenoids and chlorophyll than 'Hass' peels. Lutein was the most abundant carotenoid. Chlorophyll a and b were also abundant in peels and low concentrations of chlorophyll derivatives were observed. Avocado peels are an important source of bioactive compounds, including some carotenoids, acids, sterols, and volemitol, which were observed for the first time.


Asunto(s)
Persea , Clorofila A , Frutas/química , Humanos , Fenoles/análisis , Fitoquímicos
8.
Saudi J Biol Sci ; 28(2): 1401-1416, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33613070

RESUMEN

Navicula incerta is a marine microalga distributed in Baja California, México, commonly used in aquaculture nutrition, and has been extended to human food, biomedical, and pharmaceutical industries due to its high biological activity. Therefore, the study aimed to optimize culture conditions to produce antioxidant pigments. A central composite experimental design and response surface methodology (RSM) was employed to analyze the best culture conditions. The medium (nitrogen-deficient concentrations), salinity (PSU = Practical Salinity Unity [g/kg]), age of culture (days), and solvent extraction (ethanol, methanol, and acetone) were the factors used for the experiment. Chlorophyll a (Chl a) and total carotenoids (T-Car), determined spectroscopically, were used as the response variables. The antioxidant capacity was evaluated by DPPH• and ABTS•+ radical inhibition, FRAP, and anti-hemolytic activity. According to the overlay plots, the optimum growth conditions for Chl a and T-Car production were the following conditions: medium = 0.44 mol·L-1 of NaNO3, salinity = 40 PSU, age of culture: 3.5 days, and solvent = methanol. The pigment extracts obtained in these optimized conditions had high antioxidant activity in ABTS•+ (86.2-92.1% of inhibition) and anti-hemolytic activity (81.8-96.7% of hemolysis inhibition). Low inhibition (33-35%) was observed in DPPH•. The highest value of FRAP (766.03 ± 16.62 µmol TE/g) was observed in the acetonic extract. The results demonstrated that RSM could obtain an extract with high antioxidant capacity with potential applications in the biomedical and pharmaceutical industry, which encourages the use of natural resources for chemoprevention of chronic-degenerative pathologies.

9.
Plants (Basel) ; 9(12)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256023

RESUMEN

Annona muricata L. is a tropical tree that is used in traditional medicine around the world. The high content of flavonoid, alkaloid, acetogenin, phenolic and lipophilic compounds of this tropical tree forms the basis of its traditional medical uses. Our objective was to study soursop leaf extracts to support their use as antiviral therapies and investigate their protective effects against oxidative damage. The aqueous extract (AE) and acidified ethanolic extract (AEE) of soursop leaves were characterized by ultra performance liquid chromatography (UPLC), and their effects on human erythrocytes and in vitro antioxidant capacity, as evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays, were investigated. The antiviral effects were evaluated using a bacteriophage surrogate. AEE showed the highest phenolic content, with rutin as the predominant compound. This extract showed higher values in the DPPH and ABTS assays, with 23.61 ± 0.42 and 24.91 ± 0.16 mmol of Trolox equivalent per gram, respectively. Inhibition of hemolysis was 34% and 51% for AE and AEE, respectively. AEE was selected for the antiviral study because of its higher antioxidant activity. The viral reduction ranged from 5-6 log10 plaque-forming units/volume (PFU) at contact times of 15-360 min. Soursop leaves have a positive effect on reducing oxidative stress in human erythrocytes and viral infections.

10.
J Food Sci ; 84(10): 2883-2897, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31553062

RESUMEN

Quercetin is a hydrophobic flavonoid with high antioxidant activity. However, for biological applications, the bioavailability of quercetin is low due to physiological barriers. For this reason, an alternative is the protection of quercetin in matrices of biopolymers as zein. The objective of this work was to prepare and characterize quercetin-loaded zein nanoparticles by electrospraying and its study of in vitro bioavailability. The physicochemical parameters such as viscosity, density, and electrical conductivity of zein solutions showed a dependence of the ethanol concentration. In addition, rheological parameters demonstrated that solutions of zein in aqueous ethanol present Newtonian behavior, rebounding in the formation of nanoparticles by electrospraying, providing spherical, homogeneous, and compact morphologies, mainly at a concentration of 80% (v/v) of ethanol and of 5% (w/v) of zein. The size and shape of quercetin-loaded zein nanoparticles were studied by transmission electron microscopy (TEM), observing that it was entrapped, distributed throughout the nanoparticle of zein. Analysis by Fourier transform-infrared (FT-IR) of zein nanoparticles loaded with quercetin revealed interactions via hydrogen bonds. The efficacy of zein nanoparticles to entrap quercetin was particularly high for all quercetin concentration evaluated in this work (87.9 ± 1.5% to 93.0 ± 2.6%). The in vitro gastrointestinal release of trapped quercetin after 240 min was 79.1%, while that for free quercetin was 99.2%. The in vitro bioavailability was higher for trapped quercetin (5.9%) compared to free quercetin (1.9%), than of gastrointestinal digestion. It is concluded, that the electrospraying technique made possible the obtention of quercitin-loaded zein nanoparticles increasing their bioavailability. PRACTICAL APPLICATION: This type of nanosystems can be used in the food and pharmaceutical industry. Quercetin-loaded zein nanoparticles for its improvement compared to free quercetin can be used to decrease the prevalence of chronic degenerative diseases by increasing of the bioavailability of quercetin in the bloodstream. Other application can be as an antioxidant system in functional foods or oils to increase shelf life.


Asunto(s)
Composición de Medicamentos/métodos , Quercetina/química , Zeína/química , Antioxidantes/química , Antioxidantes/metabolismo , Disponibilidad Biológica , Biopolímeros/química , Línea Celular , Portadores de Fármacos/química , Composición de Medicamentos/instrumentación , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Nanopartículas/metabolismo , Tamaño de la Partícula , Quercetina/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
11.
J Food Sci ; 84(4): 818-831, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30802954

RESUMEN

Currently, electrospraying is a novel process for obtaining the nanoparticles from biopolymers. Zein nanoparticles have been obtained by this method and used to protect both hydrophilic and hydrophobic antioxidant molecules from environmental factors. The objective of this work was to prepare and characterize gallic acid-loaded zein nanoparticles obtained by the electrospraying process to provide protection to gallic acid from environmental factors. Thus, it was related to the concentration of gallic acid in physicochemical and rheological properties of the electrosprayed solution, and also to equipment parameters, such as voltage, flow rate, and distance of the collector in morphology, and particle size. The physicochemical properties showed a relationship in the formation of a Taylor cone, in which at a low concentration of gallic acid (1% w/v), low viscosity (0.00464 ± 0.00001 Pa·s), and density (0.886 ± 0.00002 g/cm3 ), as well as high electrical conductivity (369 ± 4.3 µs/cm), forms a stable cone-jet mode. The rheological properties and the Power Law model of the gallic acid-zein electrosprayed solution demonstrated Newtonian behavior (n = 1). The morphology and size of the particle were dependent on the concentration of gallic acid. Electrosprayed parameters with high voltage (15 kV), low flow rate (0.1 mL/hr), and short distance (10 cm) exhibited a smaller diameter and spherical morphology. FT-IR showed interaction in the gallic acid-loaded zein nanoparticle by hydrogen bonds. Therefore, the electrospraying process is a feasible technique for obtaining gallic acid-loaded zein nanoparticles and providing potential protection to gallic acid from environmental factors.


Asunto(s)
Técnicas Electroquímicas , Ácido Gálico/química , Nanopartículas/química , Zeína/química , Antioxidantes , Biopolímeros/química , Enlace de Hidrógeno , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier
12.
Molecules ; 23(12)2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30518166

RESUMEN

Plum edible part was used to obtained extracts by during a 4 h maceration process using three different solvents (ethanol, methanol and water) for the determination of total phenols and flavonoids, antioxidant capacity by (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hemolysis inhibition in human blood assays. Subsequently, phenolic compounds were identified using ultra-performance liquid chromatography (UPLC-MS). The results indicated that the ethanolic extract of plum fruit being a good source of phenolic (12⁻18 mg GAE/g FW) and flavonoids (2.3⁻2.5 mg QE/g FW) content in both varieties of plum. Also, the fruits proved a good source of antioxidants as measured by DPPH and ABTS; likewise, plum aqueous extracts showed the highest protective effect on human erythrocytes with 74.34 and 64.62% for yellow and red plum, respectively. A total of 23 bioactive compounds were identified by UPLC-MS, including gallic acid, rutin, resorcinol, chlorogenic acid, catechin, and ellagic acid, and the antioxidant capacity can be attributed to these species. The edible part of plum contains compounds of biological interest, suggesting that this fruit has antioxidant potential that can be exploited for various technologies.


Asunto(s)
Antioxidantes , Compuestos de Bifenilo , Eritrocitos/efectos de los fármacos , Fenoles , Picratos , Prunus domestica/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Benzotiazoles/química , Compuestos de Bifenilo/farmacología , Ácido Clorogénico/aislamiento & purificación , Ácido Clorogénico/farmacología , Cromatografía Líquida de Alta Presión , Eritrocitos/metabolismo , Ácido Gálico/aislamiento & purificación , Ácido Gálico/farmacología , Humanos , Fenoles/aislamiento & purificación , Fenoles/farmacología , Picratos/farmacología , Rutina/aislamiento & purificación , Rutina/farmacología , Espectrometría de Masa por Ionización de Electrospray
13.
Curr Top Med Chem ; 18(14): 1261-1268, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30095057

RESUMEN

Recently, Pectin (PEC) and Aloe-Gel (AG) have received great attention for their use in the encapsulation of hydrophobic bioactive compounds such as Carvacrol (CAR). The aim of this study is to assess the physical, chemical and biological properties of a novel PEC/AG film and evaluate its capability to entrap CAR into microencapsulates. For this purpose, the casting method was used to prepare the PEC/AG membranes (70:30 % w/w). The CAR-loaded PEC/AG film was prepared adding different proportions of CAR (0.25%, 0.50% and 1.00% v/v) to the mixture of PEC/AG, previously emulsified with tween 80 (1.0%). The optical properties, Water Vapor Permeability (WVP), ATR-FTIR spectroscopy, microstructure, antibacterial activity and size of microcapsules were evaluated. The PEC/AG membranes loaded with CAR showed yellowish appearance and they were transparent to the UV electromagnetic radiation (190, 200 and 280 nm). The film prepared with the lowest amount of CAR (PC/AG-CAR-0.25%) showed the highest values of WVP (66.2%) and, according to SEM micrograph, the largest microcapsules (≈1005± 39 µm3). The FTIR analysis showed the characteristic absorption peaks located at 1015 cm-1 to 1030 cm-1 and a small shoulder to 990 cm-1 of benzene ring 1:2:4 substituted that suggested the presence of CAR-loaded in the PC/AG film. On the other hand, E. coli O157:H7 showed the highest sensitivity to the PEC/AG-CAR-1.00% film, while S. aureus was not sensitive.


Asunto(s)
Composición de Medicamentos/métodos , Monoterpenos/química , Monoterpenos/farmacología , Pectinas/química , Preparaciones de Plantas/química , Antibacterianos/química , Antibacterianos/farmacología , Vendajes , Cimenos , Escherichia coli O157/efectos de los fármacos , Membranas Artificiales , Microscopía Electrónica de Rastreo , Permeabilidad , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/efectos de los fármacos , Vapor
14.
Food Res Int ; 111: 451-471, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30007708

RESUMEN

Oxidative Stress (OS) produces the formation of free radicals and other reactive oxygen and nitrogen species that are intimately involved in many diseases, especially Chronic Degenerative Diseases (CDD) such as cancer, diabetes, cardiovascular diseases, and obesity, among others. Thus, reactive compounds need to be quenched by antioxidants. The problems of these compounds include that they are susceptible to degradation, have low bioavailability, and can lose their bioactivity in the gastroIntestinal tract. Therefore, an alternative is encapsulation. Zein is a protein used in nanotechnology as a polymer matrix because it can encapsulate different compounds such as antioxidants to provide stability and control of the release. The disadvantage of zein as a delivery vehicle is that it is limited by the low stability of aggregation when suspended in water, in addition to the conditions of acid pH or that higher ionic strength tends to destabilize. To reduce these limitations, the incorporation of polysaccharides as a second polymer matrix can provide stability in zein nanoparticles. In this review, we discuss OS as a source of CDD, the role of antioxidants in the prevention of these diseases, and the preparation, characterization, and application of antioxidant-zein-polysaccharide particles as delivery systems as well as possible mechanisms to control CDD.


Asunto(s)
Antioxidantes/farmacología , Nanopartículas/química , Polisacáridos/química , Zeína/química , Enfermedad Crónica , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Concentración de Iones de Hidrógeno , Concentración Osmolar , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Fenoles/farmacología , Polímeros/química
15.
J Food Sci Technol ; 55(1): 33-41, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29358793

RESUMEN

Firmness at harvest determines the postharvest storability and quality of apples. The climate change has altered the physiological processes of fruits and the reliability of ripening indicators typically used to determine the harvest time, compromising fruit firmness. In this study, 'Golden Delicious' apples were harvested at several developmental/ripening stages (107, 122, 137, 152 and 167 days after full bloom, DAFB) and evaluated for physicochemical attributes, which were correlated with fruit firmness. The 167 DAFB fruit corresponded to fruit at the commercial harvest. Fruit harvested at 107 and 122 DAFB did not develop the characteristics of ripe fruit while fruit harvested after 137 DAFB ripened normally. Fruit at commercial harvest showed low firmness. The changes of fruit weight, diameter, height, tristimulus color (L* values) as well as the content of total soluble solids and moisture in fruit correlated well with fruit firmness (r values from -0.76 to -0.97). The changes of pectin content, degree of esterification, molecular weight and content of glucose and galactose in pectin showed a positive relationship with firmness (r = 0.62-0.94). The content of protein, galacturonic acid and mineral elements in pectin correlated negatively with firmness (r -0.66 to -0.99). The results demonstrated that commercial harvest was delayed 30 days, compromising fruit firmness. Some underestimated ripening indicators may help in determining the harvest time of apples.

16.
Food Res Int ; 99(Pt 2): 917-927, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28847428

RESUMEN

Pectin, an abundant polysaccharide in the human diet, has structural characteristics and functional properties that are strongly dependent on the food matrix (e.g., origin, type, cultivar/variety, ripening stage, style and intensity of processing). These polysaccharides have a strong effect on lipid digestion, which is required for the liberation of carotenoids from emulsified lipid droplets in the gastrointestinal content and for the formation of micelles, in which the carotenoids must be incorporated before absorption. Only micellarized carotenoids can be absorbed and subsequently exert protective effects on human health. The alteration of lipolysis by pectin can occur through several mechanisms; however, they have not been linked directly to carotenoid micellarization. This paper provides an overview of the effects of the properties of pectin on the ion concentration in the digestive content, the viscosity of the digestive medium, the properties of the lipid droplet surfaces and lipase activity and analyzes the impact of these events on lipid digestion and subsequent carotenoid micellarization.


Asunto(s)
Carotenoides/metabolismo , Dieta , Digestión/efectos de los fármacos , Frutas , Lipólisis/efectos de los fármacos , Pectinas/administración & dosificación , Verduras , Administración Oral , Animales , Disponibilidad Biológica , Carotenoides/administración & dosificación , Absorción Gastrointestinal , Humanos
17.
J Microbiol Biotechnol ; 27(2): 234-241, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-27794587

RESUMEN

Potato peels (PP) contain several bioactive compounds. These compounds are known to provide human health benefits, including antioxidant and antimicrobial properties. In addition, these compounds could have effects on human enteric viruses that have not yet been reported. The objective of the present study was to evaluate the phenolic composition, antioxidant properties in the acidified ethanol extract (AEE) and water extract of PP, and the antiviral effects on the inhibition of Av-05 and MS2 bacteriophages, which were used as human enteric viral surrogates. The AEE showed the highest phenolic content and antioxidant activity. Chlorogenic and caffeic acids were the major phenolic acids. In vitro analysis indicated that PP had a strong antioxidant activity. A 3 h incubation with AEE at a concentration of 5 mg/ml was needed to reduce the PFU/ml (plaque-forming unit per unit volume) of Av-05 and MS2 by 2.8 and 3.9 log10, respectively, in a dose-dependent manner. Our data suggest that PP has potential to be a source of natural antioxidants against enteric viruses.


Asunto(s)
Bacteriófagos/efectos de los fármacos , Levivirus/efectos de los fármacos , Fenoles/análisis , Extractos Vegetales/química , Extractos Vegetales/farmacología , Solanum tuberosum/química , Antioxidantes/farmacología , Antivirales/química , Antivirales/farmacología , Ácidos Cafeicos/análisis , Ácido Clorogénico/análisis , Cromatografía Líquida de Alta Presión , Escherichia coli/virología , Flavonoides/análisis , Humanos , Concentración de Iones de Hidrógeno , Oxidación-Reducción
18.
Int J Mol Sci ; 17(12)2016 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-27886145

RESUMEN

In marine organisms primarily intended for human consumption, the quality of the muscle and the extracted oils may be affected by lipid oxidation during storage, even at low temperatures. This has led to a search for alternatives to maintain quality. In this sense, antioxidant compounds have been used to prevent such lipid deterioration. Among the most used compounds are tocopherols, which, due to their natural origin, have become an excellent alternative to prevent or retard lipid oxidation and maintain the quality of marine products. Tocopherols as antioxidants have been studied both exogenously and endogenously. Exogenous tocopherols are often used by incorporating them into plastic packaging films or adding them directly to fish oil. It has been observed that exogenous tocopherols incorporated in low concentrations maintain the quality of both muscle and the extracted oils during food storage. However, it has been reported that tocopherols applied at higher concentrations act as a prooxidant molecule, probably because their reactions with singlet oxygen may generate free radicals and cause the oxidation of polyunsaturated fatty acids in fish oils. However, when tocopherols are included in a fish diet (endogenous tocopherols), the antioxidant effect on the muscle lipids is more effective due to their incorporation into the membrane lipids, which can help extend the shelf life of seafood by reducing the lipid deterioration that occurs due to antioxidant synergy with other phenolic compounds used supplements in fish muscle. This review focuses on the most important studies in this field and highlights the potential of using tocopherols as antioxidants in marine oils.


Asunto(s)
Tocoferoles/metabolismo , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Grasas Insaturadas en la Dieta/metabolismo , Aceites de Pescado/metabolismo , Oxidación-Reducción/efectos de los fármacos , Tocoferoles/farmacología
19.
Int J Anal Chem ; 2015: 284071, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26609308

RESUMEN

The purpose of this study was to evaluate the antioxidant and antimicrobial properties of extracts of different fractions of two tomato plant cultivars. The stems, roots, leaves, and whole-plant fractions were evaluated. Tomatine and tomatidine were identified by HPLC-DAD. The leaf extracts from the two varieties showed the highest flavonoids, chlorophyll, carotenoids, and total phenolics contents and the highest antioxidant activity determined by DPPH, ABTS, and ORAC. A positive correlation was observed between the antioxidant capacities of the extracts and the total phenolic, flavonoid, and chlorophyll contents. The Pitenza variety extracts inhibited the growth of pathogens such as E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus, and Listeria ivanovii, yielding inhibition halos of 8.0 to 12.9 mm in diameter and MIC values of 12.5 to 3.125 mg/mL. These results suggest that tomato plant shows well potential as sources of various bioactive compounds, antioxidants, and antimicrobials.

20.
Artículo en Inglés | MEDLINE | ID: mdl-26451153

RESUMEN

Vitex mollis is used in traditional Mexican medicine for the treatment of some ailments. However, there are no studies on what happens to the anti-inflammatory activity or antioxidant properties and total phenolic content of leaves and stem extracts of Vitex mollis during the digestion process; hence, this is the aim of this work. Methanolic, acetonic, and hexanic extracts were obtained from both parts of the plant. Extract yields and anti-inflammatory activity (elastase inhibition) were measured. Additionally, changes in antioxidant activity (DPPH and ABTS) and total phenols content of plant extracts before and after in vitro digestion were determined. The highest elastase inhibition to prevent inflammation was presented by hexanic extracts (leaf = 94.63% and stem = 98.30%). On the other hand, the major extract yield (16.14%), antioxidant properties (ABTS = 98.51% and DPPH = 94.47% of inhibition), and total phenols (33.70 mg GAE/g of dried sample) were showed by leaf methanolic extract. Finally, leaf and stem methanolic extracts presented an antioxidant activity increase of 35.25% and 27.22%, respectively, in comparison to their initial values after in vitro digestion process. All samples showed a decrease in total phenols at the end of the digestion. These results could be the basis to search for new therapeutic agents from Vitex mollis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...